Advanced Energy Materials: Synthesis & Characterization ESE-904 Background

1. Give brief rundown of the existing program.

Advanced Energy Materials is a field concerned with the design, manufacture, and use of all classes of materials (including metals, ceramics, semiconductors, polymers, and biomaterials), along with energy, environmental, health, economic, and manufacturing issues relating to materials. There are almost no courses at NUST of this nature in which various synthesis and analytical techniques are taught in a comprehensive way. Wet chemistry and vapor deposition techniques will be covered in this course for the development of energy materials. In parallel, a detailed overview at advanced level will be given to attendants on structural, chemical, thermal and electrical characterization of materials/components and devices, etc. The course will provide a strong foundation and understanding to students majoring in diversified fields.

Rationale

2. Rationale for offering/launching the new course.

Materials scientists are in continually high demand by industry and government for jobs in research, development, production and management. There is a wide range of challenging opportunities in sectors such as energy and the environment, in the electronics industry, in the aerospace industry, in consumer industries and in biomaterials and medical industries.

There is no course in NUST that covers such a broad spectrum and discusses the various conventional and nanotechnology routes to fabricate/develop the advanced energy materials for applications in systems such as for fossil fuels, renewable energy, and nuclear, etc. Since the appropriate characterizations of such materials/components/devices is of fundamental nature, therefore, enough portion of the course will be devoted to understanding the diversified probes available to scientific community

Educational Objectives

3. The objectives of the course are as under:

- To create awareness among students and comprehend their knowledge-base on variety of techniques currently being used by R&D/industrial community for synthesis/development of materials for energy production/conversion, etc.
- To mainly focus on intelligent synthesis of energy materials through nanotechnology routes along with blend of conventional processes.
- To discuss the instrumentation, working principles, and capabilities of various probes based on photons, electrons, and ions for structural and chemical analyses, etc.
- To know and to use various probes for transport properties such as electrical characterization, optoelectronic performance, etc.
- To provide the students with the advanced academic background necessary to contribute effectively to technically demanding projects in the field of energy efficient materials.

International Practice

- 4. Specify the universities of repute where the proposed course is being conducted.
 - i. UC Santa Barbara, USA
 - ii. University of Waterloo, Canada
 - iii. University of Washington, Seattle, USA
 - iv. Stanford University, USA
 - v. Heriot-Watt University, UK
 - vi. Leiden Universitei, Netherlands
 - vii. Colorado School of Mines, USA
 - viii. Kyoto University, Japan
 - ix. University of Canterbury, New Zealand
 - x. Korea Institute of Science and Technology, S. Korea
 - xi. Linkoping University, Sweden

Proposed Timeframe of Commencement

5. Specifying semester with year. SP-2015

Course Contents

- 6. Give details of the course on the following lines:
 - a. Course Code ESE-904
 b. Title Synthesis and Characterization of Advanced Energy Materials
 - c. Credit Hours 3
 - d. Objectives
 - To mainly focus on intelligent synthesis of energy materials through nanotechnology routes along with blend of conventional processes.
 - To discuss the instrumentation, working principles, and capabilities of various probes based on photons, electrons, and ions for structural and chemical analyses, etc.
 - To know and to use various probes for transport properties such as electrical characterization, optoelectronic performance, etc.
 - e. Outcomes

The students will be given broad flavor of various analytical and quantitative characterization techniques employed for the study of energy materials.

No.	Topics	Book	Contact Hours
1	Introduction about functional materials used in various	A	2
•	energy devices such as solar cells and fuel cells etc.		۷.
2	Crystal structures and defects	D	3
	Synthesis of energy materials		
	a) Solid state reaction method	С	
3	b) Wet chemistry routes	E	10
	Sol-gel	G	
	Co-precipitation		

f. Contents with suggested contact hours

	Hydrothermal method		
	Glycine nitrate process		
	c) Deposition based synthesis processes		
	Physical vapor deposition		
	Chemical vapor deposition		
	Plasma spraying		
	Spray pyrolysis		
	Dip coating		
	Spin coating		
	Properties of energy materials		
	Physical		
4	> Thermal	н	5
4	> Mechanical		5
	> Electrical		
	> Chemical		
	Characterization of energy materials		
	a) X-ray diffraction		
	b) Analytical imaging of energy materials		
	Optical microscopy		
	Scanning electron microscopy		
	Transmission electron microscopy		
	Focused ion beam microscopy		
	c) Chemical characterization and elemental analysis of		
5	energy materials	F	25
J	Energy dispersive X-ray spectroscopy	К	25
	X-ray photoelectron spectroscopy		
	Auger electron spectroscopy		
	 X-ray fluorescence 		
	d) Thermal Characterization of energy materials		
	 Differential thermal analysis 		
	Thermal gravimetric analysis		
	 Dilatometry (Thermal expansion) 		
	e) Electrical Characterization of energy materials		
L			1

	45	
i)	Measurement of strength, toughness and hardness	
h)	Surface area (BET), particle size and porosimetry	
g)	Spectrophotometry (UV/Visible/IR)	
f)	Raman spectroscopy	
	resistivity/conductivity	
	Two-probe and four-probe method to determine	
	I-V characteristics	
	 Cyclic voltammetry 	
	Electrochemical impedance spectroscopy	

g. Recommended Reading (including Textbooks and Reference books).

			Assigne	
No.	Title	Author(s)	d	Books
			Code	
	The Physical Chemistry of	Rolando M. A. Roque-		
1.	Materials: Energy and	Malherbe	А	Text
1.	Environmental Applications,		A	TEXI
	CRC Press			
2.	Fundamentals of Mat.	Donald Askeland and	В	Text
Ζ.	Science and Engineering	Pradeep Phule	D	TEXL
	Fundamentals of Solid State	ManijehRazeghi		
3.	Engineering, 3rd Edition,		С	Text
	Published by Springer			
	Fundamentals of	Peter YU, Manuel		
	Semiconductors: Physics	Cardona		
4.	and Materials Properties,		D	Ref
	4th Edition, Published by			
	Springer			
5.	Ceramic Processing and	M. N. Rahaman	E	Ref
5.	Sintering, 1995		Ľ	IVEI

	Advanced Characterization	Daniel Abou-Ras,		
6.	Techniques for Thin Film	Thomas Kirchartz, Uwe	F	Text
	Solar Cells	Rau, Wiley-VCH		
	Handbook of Physical Vapor	Donald M. Mattox		
7.	Deposition Processing,		G	Text
1.	Published by Elsevier Inc.		0	TOX
	2010			
8.	Electronic properties of	R.E. Hummel	Н	Ref
0.	materials		••	T(C)
9.	Materials Science of thin	Milton Ohring		Ref
0.	films		•	T(C)
10.	Introduction to physical	Avner	J	Ref
10.	metallurgy		0	T(C)
11.	Physical methods in	Flewit and Wild	К	Text
	materials characterization			TOAL
12.	Critical Materials Problems	Stein	I	Ref
	in Energy Production		L	IVEI